Scientific activities

Summary of principal research domains - Team "Architectured oxides and electro-ceramics for energy and electronics"

From exploratory research to functional materials, the group’s activities cove a wide range of knowledge and skills related to chemistry of materials.
Energy conversion, information processing, and sustainable development
are just a few applied example area for the group’s research, supported by well established culture of solid chemistry.


Fuel cells X-Chromes materials Ferroic materials
Multi-scale modeling Thermoelectric and magnetocaloric oxides





Fuel cells

Our research focuses on electrode materials for high-temperature fuel cells (SOFC, PCFC) and steam electrolyzers (SOEC), specifically on composite MIEC (Mixed Ionic – Electronic Conductors) mixed conductive oxides, with the aim to obtain efficient interfaces (gas, electrode, electrolyte) and thus to lower the operating temperature of the systems below 700 ° C. Performances optimization results from a global cell improvement combining aspects of materials performance, electrode shaping, and cell architecture.

Assembly of cells for electrochemical measurements – Infiltration of an electro-catalyst in an ion-conducting skeleton


  • Guesnet L., Geffroy P.-M., Flura A., Nicollet C., Grenier J.-C., Vulliet J., Chartier T., Bassat J.-M. “Shaping of ceria-based SOC cells: development of a combined tape-casting and infiltration route.” ECS Transactions 2019, vol. 91, p. 291-299. DOI : 10.1149/09101.0291ecst
  • Vibhu V., Flura A., Rougier, A., Nicollet, C., Grenier J.-C., Bassat J. M. “Ageing study of lanthanum-praseodymium nickelates La2-xPrxNiO4+δ as oxygen electrodes for Solid Oxide Cells”, Journal of Energy Chemistry 2020, vol 46, p. 62-70. DOI : 10.1016/j.jechem.2019.10.012
  • Vibhu V., Vinke I. C., Eichel R.-A., Bassat J.-M., De Haart L. G. J. La2Ni1-xCoxO4+δ (x = 0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells. Journal of Power Sources 2019, vol. 444, p. 227292 (8 p.). DOI : 1016/j.jpowsour.2019.227292
  • Ogier T., Prestipino C., Figueroa S., Mauvy F., Mougin J., Grenier J.-C., Demourgues A., Bassat J. M. In-situ study of cationic oxidation states in Pr2NiO4+δ using X-ray absorption near-edge spectroscopy. Chemical Physics Letters 2019, vol. 727, p. 116-120. DOI : 1016/j.cplett.2019.04.034
  • Geffroy P. M., Guironnet L., Bouwmeester H. J. M., Chartier T., Grenier J.-C., Bassat J. M. Influence of oxygen partial pressure on the oxygen diffusion and surface exchange coefficients in mixed conductors. Journal of the European Ceramic Society 2019, vol. 39, p. 59-65. DOI : 1016/j.jeurceramsoc.2018.03.034
  • Marik S., Nicollet C., Channabasappa M., Fourcade S., Wattiaux A., Duttine M., Decourt R., Bassat J. M., Toulemonde O. SrCo85Fe0.15O2.62 – Oxygen deficient “314-type” perovskite; a highly efficient cathode for solid oxide fuel cells. Fuel Cells (Weinheim, Germany) 2017, vol. 17, n° 3, p. 353-358. DOI : 10.1002/fuce.201600203


X-Chromic materials

X-Chromic materials and devices have the ability of modulating their optical properties under an external stimulus. Our research concerns the tuning of the material, by playing with morphology, composition, and crystallinity until its integration in a device with optimized architecture. Our work concerns all the layers of the stack, transparent conductive oxides, electrolyte, electrochromic and thermochromic materials.our recent activities concern the vanadium oxides that present multiple stoichiometries. V2O5 exhibits reversible multi-electrochromism associated with a color change in between orange, green and blue while Nb doping in VO2 leads to a decrease of the transition temperature close to ambient T.




Figure : Electrochromic behavior of V2O5 opaque film switching in between orange, green and blue




  • Danine A., Manceriu L., Faure C., Labrugère C., Penin N., Delattre A., Eymin-Petot-Tourtollet G., Rougier A. Toward simplified electrochromic devices using silver as counter electrode material. ACS Applied Materials & Interfaces 2019, vol. 11, n° 37, p. 34030-34038. DOI : 10.1021/acsami.9b1238
  • Guan S., Souquet-Basiège M., Toulemonde O., Denux D. , Penin N., Gaudon M., Rougier R., Towards Room Temperature thermochromism of VO2 by Nb-doping : magnetic investigations. Chemistry of Materials 2019, 31, 23, 9819-9830. DOI : 10.1021/acs.chemmater.9b03906
  • Mjejri I., Gaudon M., Song G., Labrugère C., Rougier A. Crystallized V2O5 as oxidized phase for unexpected multicolor electrochromism in V2O3 thick film. ACS Applied Energy Materials 2018, vol. 1, n° 6, p. 2721-2729. DOI : 10.1021/acsaem.8b00386
  • Toulemonde O., Devoti A., Rosa P., Guionneau P., Duttine M., Wattiaux A., Lebraud E., Penin N., Decourt R., Fargues A., Buffière S., Demourgues A., Gaudon M. Probing Co- and Fe-doped LaMO3 (M = Ga, Al) perovskites as thermal sensors. Dalton Transactions 2018, vol. 47, n° 2, p. 382-393. DOI : 10.1039/C7DT03647G


Ferroic materials

Historically within the domain of solid-state chemistry, research in the field of ferroic materials is diversifying in terms of applications, interdisciplinarity and recent developments towards sustainable materials and processes. Our group explores the synthesis of new ferroic materials (new phases, polymorphs, multi-materials, etc…) and the control of their shaping (structuring, densification, sintering, etc…).  In addition to established processing routes, our team is increasingly interested in the development of novel low temperature processes. The evaluation of these materials, both from a fundamental and an applied point of view, incorporates a complete diagnosis based on structural, microstructural and ferroic characterization. This approach is complemented by 3D modelling and imaging, which play an essential role in our understanding of structure-property relationships at different length-scales.




  • Elissalde C., Chung U.-C., Josse M., Goglio G., Suchomel M. R., Majimel J., Weibel A., Soubie F., Flaureau A., Fregeac A., Estournès C. Single-step sintering of zirconia ceramics using hydroxide precursors and Spark Plasma Sintering below 400 °C. Scripta Materialia 2019, vol. 168, p. 134-138. DOI : 10.1016/j.scriptamat.2019.04.037
  • Hérisson de Beauvoir T., Sangregorio A., Cornu I., Elissalde C., Josse M. Cool-SPS: an opportunity for low temperature sintering of thermodynamically fragile materials. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices 2018, vol. 6, n° 9, p. 2229-2233. DOI : 10.1039/C7TC05640K
  • Buse G., Xin C., Marchet P., Borta-Boyon A., Pham-Thi M., Cabane H., Veron É., Josse M., Velázquez M., Lahaye M., Lebraud É., Maglione M., Veber P. Spinodal decomposition in lead-free piezoelectric BaTiO3–CaTiO3–BaZrO3 crystals. Crystal Growth & Design 2018, vol. 18, n° 10, p. 5874–5884. DOI : 10.1021/acs.cgd.8b00596


Multi-scale modeling

1) Electronic structure calculations: density functional theory (DFT) and tight-binding methods (Extended Hückel), for the investigation of structure-property relationships in materials, at the atomic/chemical bonding scale. Imaging by density maps: electron density (energy-, spin, wave vector- or wave function-resolved), spin density, coulomb and kinetic energy density, electron localisation function (ELF), for identifying active regions of the electron density and magnetic interaction paths and for a precise analysis of chemical bonding.




Figure : localisation of charge carriers (polaron) in the vicinity of a defect (dopant) in a hole-doped oxide with rutile structure, calculated by DFT.










  • Mahon T., Gaudin E., Villesuzanne A., Decourt R., Bobet J.-L., Isnard O., Chevalier B., Tencé S. Hydrogen insertion in the intermetallic GdScGe: a drastic reduction of the dimensionality of the magnetic and transport properties. Inorganic Chemistry 2018, vol. 57, p. 14230-14239. DOI : 1021/acs.inorgchem.8b02247
  • Frayret C., Villesuzanne A., Pouchard M., Mauvy F., Bassat J.-M., Grenier J.-C.. A density functional study of oxygen mobility in ceria-based materials. Defect and Diffusion Forum, 2012, vol. 323–325, p 233-28 DOI : 4028/

2) Mesoscopic modeling gives a better understanding of the relationship between microstructure and properties on a scale where the laws of continuous media mechanics apply. 3D imaging techniques (X-ray micro and nano-tomography, FIB-SEM) are essential in this activity. They provide the geometric data needed to build realistic digital models of the microstructures on which the transport simulations are made.


Figure : a) Volume Rendering of a BST / MgO composite sample (the BST matrix is transparent and the visible surfaces correspond to the outside of the sample and the matrix / inclusion interfaces). b) Modeling results for the sub-volume indicated in the black cube of Fig a (at left): potential at the domain boundaries (color) and electric field lines.





  • Lesseur J., Bernard D., Chung U.-C., Estournès C., Maglione M., Elissalde C. 3D mapping of anisotropic ferroelectric/dielectric composites. Journal of the European Ceramic Society 2015, vol. 35, n° 1, p. 337-345. DOI : 10.1016/j.jeurceramsoc.2014.07.032


Thermoelectric and Magnetocaloric oxides

Our research is explores the exploration of new oxides: taking advantage of unusual oxidation states, electronic correlations and / or low dimensionality for thermoelectric (Seebeck / Peltier) and magnetic applications (magnetic entropy, devices magnetocaloric).

Our research is oriented towards the exploration of new oxides and intermetallics: taking advantage of unusual degrees of oxidation via electrochemical approaches, electronic correlations, microstructure and / or low dimensionality for thermoelectric applications (Seebeck / Peltier) and magnetic (magnetic entropy). The study of erosion / corrosion phenomena is  also examined in the context of intermetallic refrigerants and heat transfer liquids.


  • Popuri S. R., Decourt R., McNulty J. A., Pollet M., Fortes A. D., Morrison F. D., Senn M. S., Bos J.-W. G. Phonon−glass and heterogeneous electrical transport in a‑site-deficient SrTiO3. Journal of Physical Chemistry C 2019, vol. 123, n° 9, p. 5198-5208. DOI : 10.1021/acs.jpcc.8b10520
  • Madhu C.,  Petit E.,  Toulemonde O. Toward oxygen fully stoichiometric La1-xSrxCoO3 (0.5≤x≤0.9) perovskites: Itinerant magnetic mechanism more than double exchange one’s. Ceramics International 2019, DOI: 10.1016/j.ceramint.2019.11.067
  • Chennabasappa M., Chevalier B., Lahaye M., Labrugère C., Toulemonde O. A core-shell phenomena maintain the magnetocaloric properties of the ternary silicide Gd6Co1.67Si3 during water flux ageing. Journal of Alloys and Compounds 2014, vol. 584, p. 34-40. DOI : 10.1016/j.jallcom.2013.08.211