Nos tutelles

CNRS

Délégation CNRS

Le Laboratoire

Rechercher





Accueil > Groupes de Recherche > Chimie des Nanomatériaux > Pages personnelles - Groupe 5

Groupe 5 - Chimie des Nanomatériaux

Drisko Glenna

[ - ] publié le 4 septembre 2017, mis à jour le


- Personnel CNRS

- Chargée de Recherche

- E-mail / tél. : 05-40-00-63-25

- Google Scholar

- Compétences : Élaboration nanoparticules inorganiques, hybrides et polymères / Auto-assemblage / Cristallisation / Mise en forme



Education and scientific position

  • 2017 – present : CNRS junior scientist : Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS, France
  • 2016 – 2017 : Junior Chair LabEx AMADEus, funded for the project Metasilicon.
  • 2014 – 2015 Postdoctoral fellow : Laboratoire de Chimie de Coordination (LCC), Toulouse, France. Supervisors : Myrtil KAHN, Emmanuel FLAHAUT, Brigitte CAUSSAT, Anne-Françoise MINGOTAUD
  • 2010 – 2013 : Postdoctoral fellow : Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France. Supervisors : Cédric BOISSIERE, Clément SANCHEZ
  • 2006 – 2010 : PhD student : The University of Melbourne, School of Chemistry. Supervisors : Vittorio LUCA, Rachel A. CARUSO



Research activities

Keywords : Materials for optics ; Dielectric nanoparticles ; Hybrid materials ; Nanoparticle assembly ; Sol-gel chemistry ; Crystallization ; Structural control/Templating.

Light offers us both certitude and mystery. We harvest, manipulate, and generate it to the benefit of our society. However, we cannot play with light without a playground, and our playground is found among the currently available materials. I like to explore new materials with interesting and unique optical properties. My scientific research interests are currently focused on developing new synthetic pathways to produce nanoparticles and to process these nanoparticles into materials via evaporation-induced assembly processes (dip-coating, aerosols, etc.). I enjoy determining synthetic mechanisms and studying composition-structure-property relationships.
Synthesizing meta-atoms : Optically active metamaterials are materials with fascinating optical properties that do not exist in nature, for example materials with no shadow (total-light transmitters), materials that are blacker than black (total-light absorbers) and materials that create unique optical illusions (negative refractive index). Metamaterials can be constructed of nanosized building blocks, referred to as meta-atoms. I am particularly interested in dielectric meta-atoms (e.g. silicon, titania, zirconia), where the nanoparticles’ size, size dispersion, shape crystallinity, and porosity must all be taken into consideration. Silicon, with it’s propensity to oxidize to silica, is a particularly fascinating and challenging meta-atom, which promises to revolutionize optics. Ideal silicon meta-atoms have been produced using top-down techniques, but not yet using scalable solution chemistry. Keep watching my research developments in this field !
Self-assembly and patterning : Miniaturizing devices is not possible without miniaturizing organization. Directing nanoparticle placement on the nanoscale is vital and often complicated : particle-particle interactions, particle-substrate interactions and the physicochemistry of the solution medium must be considered. In the case of evaporation-induced self-assembly, evaporation kinetics, nanoparticle size, nanoparticle concentration and solution viscosity also play a role in the quality of the nanoparticle assembly. Patterned substrates add to the complexity by providing a three-dimensionally rough or a chemically inhomogeneous surface. I principally use dip-coating as a means to self-assembly and patterning.
Metal-induced crystallization : Conventionally, heat and pressure are used to induce the crystallization of amorphous inorganic materials. However, crystallization often occurs at high temperatures, which lead to melting and structural loss. Thus if a material must be nanostructured and crystalline, the crystallization temperature should be below the melting temperature. One way to achieve this is to use devitrifying agents, such as ions, to create stress and relaxation within the inorganic framework, effectively lowering the crystallization temperature. I have applied this technique to the crystallization of quartz and silicon at relatively low temperatures. The following image shows the progressive crystallization of a hollow, mesoporous silica shell using strontium as a devitrifying agent :

Nanostructure : Nanomaterials can have unprecedented properties due to their pore architectures, interfaces and miniaturized form. For instance, huge surface areas can be obtained in inorganic materials by using templates to engineer porosity. Novel multifunctional materials can be produced by combining polymers, oxides and metals to generate composite and hybrid properties. And the simple act of miniaturizing structures to the nanoscale can create properties non-existent in the bulk counter parts, such as the plasmonic and magnetic properties of gold. I am an expert in nanomaterial architectural design, using phase separation processes, polymer micelles, latexes and other templates to create novel architectures and compositions. Some of the nanostructured materials that I have created are shown in the following figure :

International Collaborations
L. Emsley (EPFL, Switzerland)
G. Such (Univ. Melbourne, Australia)
C. M. Doherty (CSIRO, Australia)


Scientific production and supervision

20 peer reviewed articles
9 invited presentations delivered to research institutions and at international conferences

Supervision : 1 PhD student, 2 postdoctoral fellows.



Distinctions and funding

  1. Fondation Université Bordeaux, 2019 (4,500 €)
  2. Solvay contract, 2018-2019 (67,000 €)
  3. Junior Chair, AMADEus, 2016-2019 (500,000 €)
  4. L’Oréal-UNESCO For Women in Science 2016 (20,000 €)
  5. Very Important Paper G. L. Drisko, et al. Adv. Funct. Mater. 2014, 24, 5494
  6. Article of the quarter International Sol-Gel Society issue 5 : G. L. Drisko, et al. Langmuir 2011, 27, 2124
  7. A Ten most accessed article of the quarter G. L. Drisko, et al. Chem. Mater. 2010, 22, 4379.
  8. Albert Shimmins Postgraduate Writing-Up Award 2009 ($3 000 AUD)
  9. Australian Institute of Nuclear Science and Engineering Inc. (AINSE) International Conference Travel Scholarship 2009 ($900 AUD)
  10. Melbourne Abroad Travel Scholarship 2009 ($1 500 AUD)
  11. AINSE awards (AINGR07025, $7 698 ; AINGR08012, $7 480 ; AINGRA09129, $6 090 AUD)
  12. Australian Research Council Nanotechnology Network Overseas Travel Fellowship 2008 ($5 000 AUD)
  13. Postgraduate Overseas Research Scholarship 2008 ($5 000 AUD)
  14. Best oral presentation award, Australian Research Network of Advanced Materials



10 Relevant publications (total : 20)

  1. B. Thomas, C. R. Midhum, K. B. Rubiyah, J. Jithin, A. Moores, G. L. Drisko, C. Sanchez Chem. Rev. DOI : 10.1021/acs.chemrev.7b00627.
  2. M. L. De Marco, S. Semlali, B. A. Korgel, P. Barois, G. L. Drisko, C. Amonier, Angew. Chem. Int. Ed. 2018, 57, 4478.
  3. A. Carretero-Genevrier, M. Gich, L. Picas, J. Gazquez, G. L. Drisko, J. Rodriguez-Carvajal, C. Boissiere, D. Grosso, C. Sanchez, Science 2013, 340, 827.
  4. M. Hembury, C. Chiappini, S. Bertazzo, T. Kalber, G. L. Drisko, O. Ogunlade, S. Walker-Samuel, S. K. Krishna, C. Kumar, A. Porter, M. Lythgoe, C. Boissière, C. Sanchez, M. M. Stevens, Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 1959.
  5. G. L. Drisko, A. Carretero-Genevrier, D. Grosso, C. Boissière, C. Sanchez, Nanoscale 2014, 6, 14025.
  6. M. Faustini, G. L. Drisko, A. A. Letailleur, R. S. Montiel, C. Boissière, A. Cattoni, A.-M. Haghiri-Gosnet, G. Lerondel, D. Grosso, Nanoscale 2013, 5, 984.
  7. G. L. Drisko, A. Zelcer, V. Luca, R. A. Caruso, G. J. A. A. Soler-Illia, Chem. Mater. 2010, 22, 4379.
  8. G. L. Drisko, A. Carretero-Genevrier, M. Gich, J. Gàzquez, D. Grosso, C. Boissière, J. Rodriguez-Carvajal, C. Sanchez, Adv. Funct. Mater. 2014, 24, 5494.
  9. G. L. Drisko, C. Gatel, P.-F. Fazzini, A. Ibarra, S. Mourdikoudis, V. Bley, K. Fajerwerg, P. Fau, M. Kahn, Nano Lett. 2018, 18, 1733.
  10. I. Mjejri, C. M. Doherty, G. L. Drisko, A. Rougier, ACS Appl. Mater. Interfaces 2017, 9, 39930.