Nos tutelles


Délégation CNRS

Le Laboratoire


Accueil > Groupes de Recherche > Energie : Matériaux et Batteries > Pages personnelles - Groupe 2

Groupe 2 - Energie : Matériaux et batteries

Pecquenard Brigitte

[ - ] publié le , mis à jour le

- Personnel Bordeaux INP (ENSCBP)

- Professeur des Universités

- E-mail / - tél. : 05-40-00-33-03

- Publications - Citation Metrics / ORCID /

- Compétences : Couches minces / Pulvérisation cathodique / Oxydes de métaux de transition / Sulfures de métaux de transition / Electrodes et électrolyte solide / Microbatteries au lithium ou au sodium / Electrochimie du solide

Education and scientific position

1992 – 1995 : Doctorate in Materials Science with distinction : Laboratoire de Chimie Appliquée de l’Etat Solide (Chimie ParisTech), Pierre et Marie Curie University, France. Supervisors : Pr. N. Baffier et D. Gourier
1996-1997 : Postdoctoral fellow : Laboratoire de Chimie de la Matière Condensée, Pierre et Marie Curie University, France. Supervisor : Pr. J. Livage
1997-1998 : Postdoctoral fellow : Materials research Center , Binghamton University, USA. Supervisor : Pr. S. Whittingham
1999-2000 : Postdoctoral fellow : Laboratoire d’électrochimie industrielle, Conservatoire National des Arts et Métiers, France. Supervisor : Pr. J. F. Fauvarque
2000 – 2014 : Assistant Professor, ENSCBP, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS, France
2009 – : Managing Director of the team ‘microbatteries’ after the retirement of Pr A. Levasseur
2013 – : Managing Director and Deputy Managing Director of the department ‘Materials’ at the Graduate School of Chemistry Biology and Physics of Bordeaux
2014 – : Full Professor : Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS, France

Research activities

Keywords : Thin films ; Sputtering ; Transition metal oxides ; Transition metal sulfides ; Electrodes and solid electrolyte ; Lithium and sodium microbatteries ; Electrochemistry.

My scientific research interests are currently focused on new functional materials for lithium thin film microbatteries. This topic is addressed through several aspects summarized on the following figure :

  1. Involvement in the industrial development of Li all-solid-state microbatteries in collaboration with STMicroelectronics and CEA-LETI
  2. Synthesis of new functional materials : electrodes and electrolyte thin films prepared by radio-frequency magnetron sputtering. Understanding the influence of sputtering parameters on physico-chemical properties of thin films.
  3. Understanding the mechanisms occurring during Li insertion/deinsertion inside the thin films and at the electrode/electrolyte solid interface

The significant growth of portable electronics, generally battery-powered, has triggered the race for the development of high-performance microprocessors, Systems-on-a-Chip (SoCs) or DRAM, using low power consumption integrated circuits. As a consequence, the energy supply of such optimized components can be operated today also by miniaturized power sources such thin film Li or Li-ion batteries (1 to 500 µAh). They are built up through the deposition by PVD techniques of current collectors, the positive electrode, the electrolyte and the negative electrode on a rigid or flexible substrate. Actually, about ten layers are stacked to form a complex system with a total thickness of about 10 µm. Up to now, the Li/LiPON/LiCoO2 stack that supplies a 4 V voltage is the most widespread microbattery system. Nevertheless, such an operating voltage is not the most suitable for many new emerging electronic devices, which often require significantly lower ones. The choice of the active materials (electrodes, electrolyte) depend on the specific applications of these micro-power sources and their manufacturing process. Therefore, our aim is to tailor thin film properties by tuning the sputtering parameters in order to improve the performance of each active constituent of the cell as well as the overall behavior of the microbattery. The current studies are focusing on compounds reacting with lithium according to a conversion reaction (hence having a far larger theoretical capacity), on low voltage positive electrode materials adapted to energy harvesting systems and on materials compatible with operating or manufacturing temperature (solder-reflow) higher than the Li melting temperature (181°C).

National Collaborations
L. Bourgeois (ISM, Bordeaux)
H. Martinez (IPREM, Pau)
R. Salot (CEA LETI, Grenoble)

International Collaborations
N. Sharma (UNSW, Australia)

Industrial collaborations
Project with STMicroelectronics : “New generation microbatteries”, 2012-2017

Scientific production and supervision

55 peer-reviewed articles/ 1 proceedings/ 1 book chapter/ 5 patents
11 invited talks in national or international conferences

Supervision : 12 PhD students (1 currently), 8 postdoctoral fellows (2 currently), 6 master students.

Teaching activities

All my teaching activies are leaded at the Graduate School of Chemistry Biology and Physics of Bordeaux

  • BSc degree /semester S5 : “Inorganic chemistry” (Lectures for 26 h)
  • BSc degree/semester S5 : “ Atomistic” (Lectures and practical tutorials for 20 h)
  • BSc degree/semester S6 : “Defects in solid” (Lectures and practical tutorials for 36 h)
  • MSC degree/semester S7 : “Spectroscopic techniques” (Lectures, practical tutorials and practical training for 25 h)
  • MSC degree/semester S8 : “Thin films” (Lectures in English for 7h)
  • MSC degree/semester S8 : “Renewable energy” (Lectures for 10h)
  • MSC degree/semester S8 : “Inorganic chemistry” (Multidisciplinary practical training for 24 h)

Some Relevant publications (total : 62) , * = corresponding author

  1. « Electrochemical mechanisms involved during lithium insertion into TiO0.6S2.8 thin film used as positive electrode in lithium microbatteries » J. Electrochem. Soc., 152(1) A141-A146 (2005). M.H. Lindic, B. Pecquenard, P. Vinatier, A. Levasseur, H. Martinez, D. Gonbeau, P.E. Petit, G. Ouvrard.
  2. « Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performances ». B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur. Solid State Ionics, 186 (2011) 29-36.
  3. « Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale ». B. Fleutot, B. Pecquenard, F. Le Cras, B. Delis, H. Martinez, L. Dupont, D. Guy-Bouyssou. J. Power Sources, 196 (2011) 10289-10296.
  4. « Investigation on the part played by the SEI on the electrochemical performances of the silicon electrode for lithium-ion batteries ». M. Ulldemolins, F. Le Cras, B. Pecquenard, V. P. Phan, L. Martin, H. Martinez. J. Power Sources 206 (2012) 245-252.
  5. « High-performance all-solid-state cells fabricated with silicon electrode ». V. P. Phan, B. Pecquenard, F. Le Cras. Advanced Functional Materials, 22 (2012) 2580-2584.
  6. « Memory effect highlighting in silicon anode for high energy density lithium-ion batteries ». M. Ulldemolins, F. Le Cras, B. Pecquenard. Electrochemistry Communications, 27 (2013) 22-25.
  7. « Thorough characterization of sputtered CuO thin films, used as conversion material electrodes for lithium batteries ». D. Poinot, B. Pecquenard, F. Le Cras, O. Sicardy, J. P. Manaud. ACS Applied Materials & interfaces, 6 (2014) 3413-3420.
  8. « Perfect reversibility of the lithium insertion in FeS2 : the combined effects of all-solid-state and thin film cell configurations ». F. Flamary, V. Pelé, L. Bourgeois, B. Pecquenard, F. Le Cras. Electrochemistry Comunications, 51(2015) 81-84.
  9. « All-solid-state lithium-ion microbatteries using a silicon nanofilm anodes : high performance and memory effect ». F. Le Cras, B. Pecquenard, V. Dubois, V. P. Phan, D. Guy-Bouyssou. Advanced Energy Materials,5 (19) (2015) 1501061.
  10. « Dual Cation- and Anion-Based Redox Process in Lithium Titanium Oxysulfide Thin Film Cathodes for All-Solid-State Lithium-Ion Batteries ». V. Dubois, B. Pecquenard, S. Soulé, H. Martinez, F. Le Cras. ACS Applied Materials and Interfaces, 9(3) (2017) 2275-2284.